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Abstract 
The purpose of this research is to compare the strengths and weaknesses of different ciphers used 
through the years, as well as their difficulty to solve using modern methods. In order to do this, a 
program to break each cipher has been analyzed. Simple ciphers that are easier to break can be 
broken with simpler programs and in a smaller amount of time, while more difficult, more 
advanced ciphers require more complex computer programs which take more time to create and 
run. This research attempts to prove that the more modern a particular cipher is, the harder it is to 
break using a computer. 

Introduction 
Cryptography has been a crucial factor in ensuring that secure communication has existed through 
the ages, from the time of Julius Caesar to the present. In Julius Caesar’s time, cryptography only 
existed for man to man communication and could only be used by the powerful, while 
cryptography now has become more machine oriented and is used by almost all people today, for 
uses as mundane as buying groceries. Cryptography, in essence, is a race between those who make 
cryptosystems and those who try to break them: if a cryptosystem can be solved, it becomes 
unusable. As the years have passed, the strength of cryptosystems has improved as well: the Caesar 
cipher can be solved on paper today, while it would take our fastest supercomputers hundreds of 
years to crack RSA, the cryptosystem currently in use today. A cryptosystem like Enigma could 
not have been cracked in the 19th century, took the Allies years of dedicated work to crack it in the 
20th century, and yet can be cracked with ease with computers today in the 21th century. 
Furthermore, RSA could be cracked in a few decades when more powerful quantum computers are 
built. In this paper, I will analyze the relative strengths of different cryptosystems, such as the 
Caesar cipher, substitution ciphers, the Vigenère cipher, the Hill cipher, Enigma, and finally El 
Gamal and RSA.  
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Study of Caesar Cipher 
The Caesar cipher was one of the first ciphers recorded to have been used, as it is over 2000 years 
old. One of the first recorded uses of the Caesar cipher was by the Roman general Julius Caesar, 
after whom it is named. At the time, the Caesar cipher worked well, as frequency analysis had not 
yet been invented. Furthermore, most people at that time were either illiterate or only fluent in one 
language, so many assumed that the cipher was simply written in a language that they did not 
know.  

Formula for encrypting: (p + s) mod 26 

Formula for decrypting (c-s) mod 26 

 

However, the Caesar cipher can easily be solved using brute force. If only lowercase letters are 
used in the cipher, there are only 25 possible shifts (a shift of 0 is trivial). By simply writing out all 
25 different possibilities, the correct interpretation will be found. Someone using only pencil and 
paper could solve a Caesar cipher in less than half an hour. The advent of computers, however, 
means that a Caesar cipher can be solved in seconds using modular arithmetic. Each letter in the 
alphabet is given a number from 1 to 26 (A is 1 and Z is 26). When encrypted, the letter is moved 
forward by shift amount s. Therefore, the new letter is (p(plaintext) + s) mod 26. This number can 
then be converted back into the alphabet. Similarly, to decrypt, the formula is (c(cipher text) – s) 
mod 26. Computers can run through all of the possibilities quickly, and the correct one can be 
picked out. Although the introduction of ASCII makes a 128 letter alphabet possible, the amount of 
time a computer needs to break such a cipher is still trivial. 

While the Caesar cipher was a good cipher for its time, developments in cryptography have 
rendered it obsolete long before computers arose. In the 9th century, the Muslim mathematician and 
philosopher al-Kindi wrote a book about breaking cryptosystems, where he introduced frequency 
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analysis. With frequency analysis, long Caesar ciphers could easily be broken without the need to 
brute force it.   

Study of Substitution Cipher 
Substitution Ciphers have been around for centuries, although they became prevalent long after the 
Caesar Cipher was first introduced. Since every letter in a substitution cipher can be mapped to any 
other letters, there are far too many possibilities (4x1026) for brute force to work. For this reason, 
the substitution cipher remained useful for many centuries. However, in the 9th century, an Arab 
philosopher and mathematician named al-Kindi came up with the idea of frequency analysis. The 
idea behind frequency analysis is that the frequency of letters in any alphabet vary greatly. For 
example, in English, the letter E is over 170 times more common than the letter Z. Since each 
plaintext letter is always mapped to the same ciphertext letter, the most common letter in the 
ciphertext most likely corresponds to the most common letter in English, and so on. After a few 
such letters are guessed accurately, common bigrams and trigrams such as THE, AND, OR can be 
found, and thus more letters will be known. With computers, it has become even easier to use 
frequency analysis to crack substitution ciphers. 

First, a computer is used to find the frequency of every letter in the ciphertext. After finding the 
most common letters, the most common letters in English (E, T, and A) are substituted in. Then, 
common two and three letter words can be filled in. Less common letters can then be substituted 
in. The longer any given extract is, the more likely it is that the frequencies exactly match, and the 
easier it will become. As more letters are filled in, it is easier to find words, which will then give 
the key to decrypting yet more letters. 
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First, In the python code, all of the characters that we need are defined. Then, to make the key, we 
simply rearrange all of the characters and match to them to a set of non-rearranged characters. To 
encrypt the function, we simply take each letter of the plaintext and map it to the corresponding 
letter in the key, creating our ciphertext. Decryption works the other way, where we take each 
letter in the key, and map it to each letter in the ciphertext, to form the plaintext. 

 

 

Study of Vigenère Cipher 
The Vigenère Cipher is a newer cipher than the substitution cipher, as it was created in the 16th 
century, originally by an Italian named Giovan Belasso. However, the Frenchman Blaise de 
Vigenère popularized a better version of the cipher in the 1800s, and the cipher is named after him. 
It utilizes a key and a plaintext, just like the previous two ciphers, but the fact that the key is as 
long as the plaintext makes it more difficult to break. 

First, a key is chosen for the cipher. This key can be of any length. It is then repeated, so that is as 
long as the plaintext. Generally, the longer this key is, the harder the cipher is to break. In fact, a 
one time pad, a form of encryption where the key is both random and longer than the plaintext, is 
impossible to break. However, this is impossible because each new key has to be completely 
random, and both the sender and the recipient need to have a copy of it. In the Vigenère cipher, the 
first letter of the ciphertext is: 

(P + K) mod 26, where P is the first letter of the plaintext and K is the first letter of the key. This is 
why the Vigenère cipher is often considered a series of Caesar ciphers in a row. 

This is much stronger than a substitution cipher, because a letter in the plaintext of a Vigenère 
cipher is not always represented by the same letter in the ciphertext. However, while the Vigenère 
cipher can still be cracked rather easily with the help of the computer. Using the index of 
coincidence, the key length can be figured out. (The index of coincidence is significantly higher for 
the true key length and its multiples than it is for any other number.) When the key length is 
figured out, a combination of frequency analysis and brute force can be used to figure out the key. 
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When that is completed, the knowledge of the key is enough for the attacker to figure out the 
original plaintext. 

 Study of Hill Cipher 
The Hill Cipher is a much more recent cipher, having been invented in 1929, by a man named 
Lester S. Hill. Unlike the previous ciphers discussed, the Hill Cipher works with matrices, and in 
particular matrix multiplication. The key for a hill cipher is an nxn matrix, while the plaintext is 
divided into blocks with n letters each. For example, a block of text with 4 letters (after being 
converted to numbers) would have a 4x4 matrix as its key. After matrix multiplication is carried 
out, the result would be n numbers, in this case 4. Those numbers, mod 26 become the ciphertext 
(after being converted back into letters). Matrix multiplication makes this cipher very difficult to 
break, as the letters of the ciphertext have very little correlation with those of the plaintext. 
Frequency analysis does not work on the Hill Cipher, provided that the matrix being is used is 
sufficiently large. However, there are still flaws in the Hill Cipher, that can be exploited to break it.  

For instance, the Hill Cipher is very vulnerable to what is known as the known plaintext attack. In 
this scenario, attackers, along with knowing the ciphertext, know phrases that are in the plaintext. 
When cracking Enigma, another cipher vulnerable to this method, the Allies used German 
predictability to great effect. For example, messages sent using Enigma often included phrases 
such as “Heil Hitler” or “Nothing to Report”. In more extreme scenarios, the Allies would coerce 
the Germans into including a specific phrase in their reports. In one case, the Allies sent out orders 
for an attack on a city using a cipher that they knew the Germans had broken, and then waited as 
German reports were sent using Enigma including the name of that city. 

Since the Hill Cipher is linear, an attacker who knows n2 plaintexts can crack an nxn matrix in the 
Hill Cipher. Once the matrix is known, the ciphertext can be decoded. 

 

Study of El Gamal Encryption 
El Gamal is an advanced cryptosystem, that relies heavily on Diffie-Hellman Key Exchange. 
Diffie-Hellman Key Exchange is better than other methods of sharing keys. In most systems, the 
sender and the recipient must meet securely to set their key. However, in Diffie-Hellman, they can 
establish a secret key over insecure means of communication. This means that El Gamal can be 
used even if a key has not already been decided upon. 
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Diffie-Hellman Key Exchange: Both the sender and the recipient choose a base x and a mod p. The 
sender chooses a secret integer y, and then computes xy mod p, which is Y. Likewise the recipient 
chooses a secret integer z, and then computes xz mod p, which is Z. The sender computes Zy mod 
p, while the recipient computes Yz mod p, which are both the same. This is the key. If the number 
p is sufficiently large, no computer can break it. However, it is still susceptible to a man in the 
middle attack, where the attacker pretends that she is the recipient to the sender and that she is the 
sender to the recipient. 

El Gamal: El Gamal encryption begins with a key generator. The recipient(Alice) finds a cyclic 
group G with generator g that has order q. A number x is randomly found from the group of 
integers from 1 to (q-1). The number h, that is gx, is found. H, g, q, and G are published, while x is 
kept secret as Alice’s secret key. 

The next step is the encryption of the plaintext. The sender(Bob) chooses another number y from 
the group of integers from 1 to (q-1). C1 is gy. Bob then calculates the number s from hy and gxy. 
Bob puts his message m on another element m1 in group g. He then calculates m1 * s., which is c2. 
Bob sends the ciphertext (c1, c2) to Alice.  

The final step is decryption. First, Alice calculates s, which is equal to c1x. She then calculates m1, 
which is c2 * s-1. (s-1 is the inverse of s in group G). M1 is then converted back into the plaintext 
m.  

Study of RSA 
RSA is an example of an asymmetric cryptosystem. Because of this, it is very difficult to crack 
RSA. Even if the attacker knows the public key, he will not be able to decrypt the message. RSA is 
the most widely-used cryptosystem today. It was developed in 1978 by Ron Rivest, Adi Shamir, 
and Leonard Adleman, after whom the cryptosystem is named. RSA is based off of the fact that is 
very difficult to find the factors of the product of two very large prime numbers. 

The first step to forming the RSA algorithm is to form the public key. First, two prime numbers p 
and q are chosen. Their product n is also computed. Another number e is also needed. E must be an 
integer, not a factor of n, and less than the totient of n. e and n make up the public key. 

Next, the private key must be generated. To do this, the totient of n is first calculated. Then, the 
number d, which is some number k multiplied by the totient of n divided by e, is calculated. D is 
the private key. 
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In order to encrypt the message, the message must be turned into a set of numbers, called m. The 
ciphertext c is equal to me mod n. The message is then decrypted by finding cd. 

RSA is the most secure cryptosystem known to exist today, and larger-bit versions, such as 2048-
bit are used by the government for sending secure messages.  

 

Analysis 
As the years have progressed, the level of difficulty in cracking ciphers has increased, and so the 
difficulty in using a computer to crack it has increased as well. While a Caesar Cipher can be 
broken with just a few lines of code, RSA is much more difficult to break. In fact, 1024-bit RSA 
can only be broken on supercomputers running simultaneously (It is estimated that the NSA would 
take one year to crack 12 1024-bit codes), and 2048-bit RSA can’t currently be broken unless 
quantum cryptography becomes possible. Analysis of the programs used shows the increasing 
complexity. 

Appendix 
Caesar Cipher 

import sys 
def decyprt(k, cyper) 
 plaintext = ‘’ 
 for each in cipher: 
  p = (ord(each)-k)%126 
  if p < 32: 
   p+=95 
  plaintext += chr(p) 
 print plaintext 
def main(argv): 
 if len(sys.argv != 1): 
  sys.exit(‘Usage:brute_caesar.py’) 
 cipher = raw_input (‘Enter message: ’) 
 for i in range (1,95,1): 
  decrypt (i, cipher) 
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if _name_ == “_main_”: 
 main(sys.argv[1:]) 

 
Substitution Cipher 

import random 
 
chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' + \ 
        'abcdefghijklmnopqrstuvwxyz' + \ 
        '0123456789' + \ 
        ':.;,?!@#$%&()+=-*/_<> []{}`~^"\'\\' 
 
def generate_key(): 
    """Generate an key for our cipher""" 
    shuffled = sorted(chars, key=lambda k: random.random()) 
    return dict(zip(chars, shuffled)) 
 
def encrypt(key, plaintext): 
    """Encrypt the string and return the ciphertext""" 
    return ''.join(key[l] for l in plaintext) 
 
def decrypt(key, ciphertext): 
    """Decrypt the string and return the plaintext""" 
    flipped = {v: k for k, v in key.items()} 
    return ''.join(flipped[l] for l in ciphertext) 
 
def show_result(plaintext): 
    """Generate a resulting cipher with elements shown""" 
    key = generate_key() 
    encrypted = encrypt(key, plaintext) 
    decrypted = decrypt(key, encrypted) 
 
    print 'Key: %s' % key 
    print 'Plaintext: %s' % plaintext 
    print 'Encrytped: %s' % encrypted 
    print 'Decrytped: %s' % decrypted 
 

Vigenère Cipher 

from itertools import cycle 
ALPHA = 'abcdefghijklmnopqrstuvwxyz' 
def encrypt(key, plaintext): 
    """Encrypt the string and return the ciphertext""" 
    pairs = zip(plaintext, cycle(key)) 
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    result = '' 
    for pair in pairs: 
        total = reduce(lambda x, y: ALPHA.index(x) + ALPHA.index(y), pair) 
        result += ALPHA[total % 26] 
    return result.lower() 
def decrypt(key, ciphertext): 
    """Decrypt the string and return the plaintext""" 
    pairs = zip(ciphertext, cycle(key)) 
    result = '' 
    for pair in pairs: 
        total = reduce(lambda x, y: ALPHA.index(x) - ALPHA.index(y), pair) 
        result += ALPHA[total % 26] 
    return result 
def show_result(plaintext, key): 
    """Generate a resulting cipher with elements shown""" 
    encrypted = encrypt(key, plaintext) 
    decrypted = decrypt(key, encrypted) 
    print 'Key: %s' % key 
    print 'Plaintext: %s' % plaintext 
    print 'Encrytped: %s' % encrypted 
    print 'Decrytped: %s' % decrypted 
 

Hill Cipher 

def hill(message, key, decrypt = False): 
    from math import sqrt 
    n = int(sqrt(len(key))) 
    if n * n != len(key): 
        raise Exception("Invalid key length, should be square-root-able like") 
    alpha = ' ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.?,-;|' 
    print "[ALPHA LENGTH]: ", len(alpha) 
    tonum = dict([(alpha[i], i * 1) for i in range(len(alpha))]) 
    # Pad the message with spacess if necessary 
    if len(message) % n > 0: 
        message += '|' * (n - (len(message) % n)) 
    # Construct our key matrix 
    keylist = [] 
    for a in key: 
        keylist.append(tonum[a]) 
    keymatrix = []  
    for i in range(n): 
        keymatrix.append(keylist[i * n : i * n + n]) 
    from numpy import matrix 
    from numpy import linalg 
    keymatrix = matrix(keymatrix).round().T 
    if decrypt: 
        determinant = linalg.det(keymatrix).round() 
        print "[DETERMINANT]", determinant 
        if determinant == 0: 
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            raise Exception("Determinant ZERO, CHANGE THE KEY!") 
        elif determinant % len(alpha) == 0: 
            raise Exception("Determinant divisible by ALPHA LENGTH, CHANGE THE KEY!") 
        inverse = [] 
        keymatrix =  matrix(keymatrix.getI() * determinant).round() 
        invdeterminant = 0 
        for i in range(10000): 
            if (determinant * i % len(alpha)) == 1: 
                invdeterminant = i 
                break 
        print "[INVERTED DETERMINANT]", invdeterminant 
        # $uper l33t stuff: http://en.wikipedia.org/wiki/Modular_multiplicative_inverse 
        for row in keymatrix.getA() * invdeterminant: 
            newrow = [] 
            for i in row: 
                newrow.append( i.round() % len(alpha) ) 
            inverse.append(newrow) 
        keymatrix = matrix(inverse) 
        print "[DECIPHERING]: ", message 
    else: 
      print "[ENCIPHERING]: ", message 
    print "[MATRIX]\n", keymatrix 
    # Main loop 
    from string import join 
    out = '' 
    for i in range(len(message) / n): 
        lst = matrix( [[tonum[a]] for a in message[i * n:i * n + n]] ) 
        result = keymatrix * lst 
        out += ''.join([alpha[int(result.A[j][0]) % len(alpha)] for j in range(len(result))]) 
    return out 
key = "GYBNQKURPGYBNQKU" 
msg = "A QUICK BROWN FOX JUMPS OVER A LAZY DOG" 
cipherText = hill(msg, key) 
print "[CIPHERED TEXT]: |%s|\n" % cipherText 
decipherText = hill(cipherText, key, True) 
if decipherText.find('|') > -1 : decipherText = decipherText[:decipherText.find('|')] 
print "[DECIPHERED TEXT]: |%s|\n" % decipherText 
if( msg == decipherText ): 
    print "[ALGORITHM] CORRECT" 
else: 
    print "[ALGORITHM] INCORRECT" 

El Gamal Encryption 

Program is too long to be listed here; so the link is provided here: 
https://github.com/dlitz/pycrypto/blob/master/lib/Crypto/PublicKey/ElGamal.py 

 
RSA 

from random import randrange, getrandbits 
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from itertools import repeat 
from functools import reduce 
  
def getPrime(n): 
    """Get a n-bit pseudo-random prime""" 
    def isProbablePrime(n, t = 7): 
        """Miller-Rabin primality test""" 
        def isComposite(a): 
            """Check if n is composite""" 
            if pow(a, d, n) == 1: 
                return False 
            for i in range(s): 
                if pow(a, 2 ** i * d, n) == n - 1: 
                    return False 
            return True 
      
        assert n > 0 
        if n < 3: 
            return [False, False, True][n] 
        elif not n & 1: 
            return False 
        else: 
            s, d = 0, n - 1 
            while not d & 1: 
                s += 1 
                d >>= 1 
        for _ in repeat(None, t): 
            if isComposite(randrange(2, n)): 
                return False 
        return True    
      
    p = getrandbits(n) 
    while not isProbablePrime(p): 
        p = getrandbits(n) 
    return p 
  
def inv(p, q): 
    """Multiplicative inverse""" 
    def xgcd(x, y): 
        """Extended Euclidean Algorithm""" 
        s1, s0 = 0, 1 
        t1, t0 = 1, 0 
        while y: 
            q = x // y 
            x, y = y, x % y 
            s1, s0 = s0 - q * s1, s1 
            t1, t0 = t0 - q * t1, t1 
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        return x, s0, t0       
  
    s, t = xgcd(p, q)[0:2] 
    assert s == 1 
    if t < 0: 
        t += q 
    return t 
  
def genRSA(p, q): 
    """Generate public and private keys""" 
    phi, mod = (p - 1) * (q - 1), p * q 
    if mod < 65537: 
        return (3, inv(3, phi), mod) 
    else: 
        return (65537, inv(65537, phi), mod)     
  
def text2Int(text): 
    """Convert a text string into an integer""" 
    return reduce(lambda x, y : (x << 8) + y, map(ord, text)) 
  
def int2Text(number, size): 
    """Convert an integer into a text string""" 
    text = "".join([chr((number >> j) & 0xff) 
                    for j in reversed(range(0, size << 3, 8))]) 
    return text.lstrip("\x00") 
  
def int2List(number, size): 
    """Convert an integer into a list of small integers""" 
    return [(number >> j) & 0xff 
            for j in reversed(range(0, size << 3, 8))] 
  
def list2Int(listInt): 
    """Convert a list of small integers into an integer""" 
    return reduce(lambda x, y : (x << 8) + y, listInt) 
  
def modSize(mod): 
    """Return length (in bytes) of modulus""" 
    modSize = len("{:02x}".format(mod)) // 2 
    return modSize 
  
def encrypt(ptext, pk, mod): 
    """Encrypt message with public key""" 
    size = modSize(mod) 
    output = [] 
    while ptext: 
        nbytes = min(len(ptext), size - 1) 
        aux1 = text2Int(ptext[:nbytes]) 
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        assert aux1 < mod 
        aux2 = pow(aux1, pk, mod) 
        output += int2List(aux2, size + 2) 
        ptext = ptext[size:] 
    return output 
  
def decrypt(ctext, sk, p, q): 
    """Decrypt message with private key 
    using the Chinese Remainder Theorem""" 
    mod = p * q 
    size = modSize(mod) 
    output = "" 
    while ctext: 
        aux3 = list2Int(ctext[:size + 2]) 
        assert aux3 < mod 
        m1 = pow(aux3, sk % (p - 1), p) 
        m2 = pow(aux3, sk % (q - 1), q) 
        h = (inv(q, p) * (m1 - m2)) % p 
        aux4 = m2 + h * q 
        output += int2Text(aux4, size) 
        ctext = ctext[size + 2:] 
    return output 
  
if __name__ == "__main__": 
  
    from math import log10 
    from time import time 
  
    def printHexList(intList): 
        """Print ciphertext in hex""" 
        for index, elem in enumerate(intList): 
            if index % 32 == 0: 
                print()             
            print("{:02x}".format(elem), end = "") 
        print() 
  
    def printLargeInteger(number): 
        """Print long primes in a formatted way""" 
        string = "{:02x}".format(number) 
        for j in range(len(string)): 
            if j % 64 == 0: 
                print() 
            print(string[j], end = "") 
        print() 
  
    def testCase(p, q, msg, nTimes = 1): 
        """Execute test case: generate keys, encrypt message and 
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           decrypt resulting ciphertext""" 
        print("Key size: {:0d} bits".format(round(log10(p * q) / log10(2)))) 
        print("Prime #1:", end = "") 
        printLargeInteger(p) 
        print("Prime #2:", end = "") 
        printLargeInteger(q) 
        print("Plaintext:", msg) 
        pk, sk, mod = genRSA(p, q) 
        ctext = encrypt(msg, pk, mod) 
        print("Ciphertext:", end = "") 
        printHexList(ctext) 
        ptext = decrypt(ctext, sk, p, q) 
        print("Recovered plaintext:", ptext, "\n") 
  
    # First test: RSA-129 (see http://en.wikipedia.org/wiki/RSA_numbers#RSA-129) 
    p1 = 3490529510847650949147849619903898133417764638493387843990820577 
    p2 = 32769132993266709549961988190834461413177642967992942539798288533 
    testCase(p1, p2, "The Magic Words are Squeamish Ossifrage", 1000) 
    
    # Second test: random primes (key size: 512 to 4096 bits) 
    for n in [256, 512, 1024, 2048]:     
        t1 = time() 
        p5 = getPrime(n) 
        t2 = time() 
        print("Elapsed time for {:0d}-bit prime ".format(n), end = "") 
        print("generation: {:0.3f} s".format(round(t2 - t1, 3))) 
        t3 = time() 
        p6 = getPrime(n) 
        t4 = time() 
        print("Elapsed time for {:0d}-bit prime ".format(n), end = "") 
        print("generation: {:0.3f} s".format(round(t4 - t3, 3))) 
        testCase(p5, p6, "It's all greek to me") 
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