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Abstract

We study the action for the three-space formalism of General Rela-
tivity, better known as the BFO (BarbourfFosterfo) Murchadha) action,
which is a square-root BSW (Baierlein—Sharp—Wheeler) action. In par-
ticular, we explore the (pre)symplectic structure by pulling it back via a
Legendre map to the tangent bundle of the configuration space of this ac-
tion. With it we attain the canonical Lagrangian vector field which gener-
ates the gauge transformations (3-diffeomorphisms) and the true physical
evolution of the system. This vector field encapsulates all the dynamics
of the system. We also discuss briefly the observables and perennials for
this theory. We then present a symplectic reduction of the constrained
phase space.

1 Introduction

In their ‘timeless’ derivation of canonical general relativity via a theory which
presupposes neither the relativity principle nor spacetime, Barbour et al ([1])
use a reparametrization invariant action, namely the Baierlein—Sharp—Wheeler
(BSW) action, where the Lagrangian is integrated over an unphysical evolution
parameter. We shall take a brief detour into their theory.

1.1 The BSW action and ‘Relativity without Relativity’

The configuration space of the system considered here is Superspace, which
is basically the set of all Riemannian metrics modulo a proper subgroup of
the full 3 dimensional diffeomorphism group of a three manifold which, in the
conventional ADM setting, is a space like hyper-surface embedded in spacetime.
The topology is fixed so that the three manifold ¥ =2 §3. The ADM action for
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the standard (3+1) split is
S = / dtd*zN/F(R — Ky K% — trK?). (1)

Now we replace K, with ﬁkab where
kab = ;Yab - Eﬁa’Yab- (2)

The £ is an arbitrary vector field with respect to which the Lie Derivative acting
on the metric represents the infinitesimal action of the 3 diffeomorphism group
on the configuration space (which turns out to be equal to the shift of ADM
gravity) and the over dot denotes differentiation with respect to an unphysical
evolution parameter A\, and so the action now looks like

S = / dA\d’z /7y [NR — ﬁ(kabk“b - trk2)] : (3)

Varying with respect to N, we get

kapk® — trk2
_ 4
Putting this back into the action, we find that

S = / dxd®z7VRVT, (5)

N:

where the ‘Kinetic Energy’ term T is
T = G“(Yap — LeoYav) (Yeb — LeaVed), (6)
and the G is the (inverse) DeWitt Supermetric.

1.2 Some Preliminaries

Here we shall discuss some of the mathematical preliminaries of our formalism.
In general, a Hamiltonian system adheres to the following diagram:

R
H E
M L ™
P PM
M



where M is the configuration space. F'L is the fiber derivative between the tan-
gent and the cotangent bundle. When it acts pointwise, it is identified with the
standard Legendre transformation. The pjss are the bundle projections from the
tangent and the cotangent bundle down to M. H is the Hamiltonian and E is the
energy function of the Lagrangian. In the system we consider, the Lagrangian
is the Barbour-Foster-O Murchadha Lagrangian Lppo : TMet(X) — R, given
by

LBFO :/d3$ﬁ\/f\/ﬁ

For a presymplectic manifold M, which possesses a presymplectic form: €, a
vector field

XfeTM
is said to be Hamiltonian if both

Lx,Q2=0

LXfQ = df
are satisfied, whereas it is locally Hamiltonian if only

Lx, Q=0
is satisfied globally. It should be noted that this terminology is carried over
even to the tangent bundle of Met(X) in this paper.

2 The Lagrangian Presymplectic Potential

Now we shall derive the Lagrangian presymplectic potential, from which the
presymplectic two form will follow. In this section we shall use the functional
exterior derivative denoted by ds whose action is defined by

ds : QP (Met(X)) — QPP (Met(X)). (7)
Its properties are
dsf = o ox®
oz

for f € Q°(Met(X)) and
ds(aAp)=dsa Ap+ (—1)Pdsp A o
dsds =0

Va € P (Met(X)) and Vu € Q4(Met(X)). By Lagrangian presymplectic poten-
tial we mean the pullback via F'L of the Hamiltonian presymplectic potential
ie.

O = (FL)" 0y,
and, correspondingly, the presymplectic Lagrangian two form is given by
Q= (FL)*dfy.

Therefore the Legendre map endows the tangent bundle of the configuration
space too with presymplectic structure.



2.1 The Constraint Submanifold of T'Met(X)

In the BFO approach, the Hamiltonian constraint of general relativity arises
from the square root identity of the local square root action (thus the BFO
authors recover infinitely many Hamiltonian constraints, i.e, one for each space
point),

1 ab 1 2
— (T Ty — =trm”) — /YR =0, 8
\/’7( ab 2 ) ﬁ ( )

and the diffeomorphism constraint arises from their best matching method where
0¢Spsw =0, (9)

which gives us
— 2V, 1% = 0. (10)

The surfaces where these constraints are satisfied thus form the constraint sub-
manifolds of T*Met(X). We shall attempt to get a similar constraint subman-
ifold on TMet(X). From the presymplectic algorithm on T*Met(X), we know
that there exists an inclusion mapping from the final constraint submanifold I'y
to T*Met(X), that is

Ty 2% T*Met(X). (11)

And, by the pullback of the presymplectic form to T Met(X),it too should pos-
sess a final constraint submanifold which shall be obtained from the following

diagram:
FL

T*Met(%) TMet(X)
TTH TE
r r
# Tt o (FL) ™t omy o
We know that
(FL)™' = FH, (12)
since
E=MoFL=muy"—L. (13)

Therefore, the above mapping from the cotangent bundle constraint submanifold
to that of the tangent bundle can be given by

-1
Tp o FHomy
Iy E

And so, the restriction of the Lagrangian presymplectic potential to T Met(X)’s
constraint submanifold is

(WEloFHOWH)*9H|FH :®|FE' (14)



2.2 The Derivation of the Potential

In this section we present the derivation of the Lagrangian presymplectic po-
tential from the BFO action. We have

55 =0= 5/dAd3xﬁ\/§ﬁ (15)

=> / A28 AVRVT + / APz /F0VRVT + / d\d*z/7VRSVT.

Expanding the variation of the third term explicitly, and integrating by parts,

we attain
R 6T ~R d [T
d3 /7 ab d d . Sl
/ T 55,00 | T e W om i\ 5

VIOVRVT.

The second term shall vanish by the Euler-Lagrange equations, but our interest
is with the first term

YR 6T YR . oped:.
/ ZT s = /d?’x Z_TG b d[’yab — LeaYab)0vap = Olry,.  (17)

where O|r,, is the presymplectic potential constrained to the constraint sub-
manifold I'g. The presymplectic two form is thus

R
0], = Qlr, = /d%(dM/Z—Tkab A dsy). (18)

3 Dynamics and the Presymplectic Equation

+ 07V RVT+ (16)

Since the presymplectic two form is degenerate, we can only derive a Canonical
locally Hamiltonian vector field called the Lagrangian vector field which satisfies

LxdsOlr, =0 (19)
=>1xd30|r, + dsixdsO|r, = 0. (20)
The first term vanished by dg =0,
d5Lxd§@|pE =0 (21)
Lxd5@|pE = d5E|FE- (22)

This is due to the Poincare Lemma, and the E is the Energy Functional, which

is given by
/YR T
E|FE = Z_TGadekabkcd - 4’}/—RR7



and so
X|rp =7 X = Xpg,

where g is the mapping from the constraint surface to the total phase space.
From this, we attain the expression for the (locally Hamiltonian) Lagrangian
vector field

4T b / /
Xp =/ —=[ka + Lgayab]— — (R“b ‘“’R) (k:‘wk:b kk‘“’) (23)
YR Yab
ab 2 kab 24
\/ 47R \/ 1y R v \/ R le \l 7R 5kab

The canonical Lagrangian vector field belongs to TT Met(X). On TT*Met(X
the Hamiltonian vector field would satisfy the presymplect1c equat1on

(XH)b|FH =0,

where
b: TT*Met(X) — T*T*Met(X),

acts as a local isomorphism when restricted to the constraint submanifold. Now,
in order to attain the same for our present formalism, we refer to the diagram:

T*T* Met(X) T"FL T*T Met(X)
b T*FLobo (TFL)
TT* Met(S) TFL TTMet(x)
Xy XE
T*Met(X) F'L TMet(S)

And so we obtain the presymplectic equation for the Canonical Lagrangian

vector field: »
(XE)(T FLobo(TFL) )|FE _ O, (25)

which for the sake of brevity shall be written as
(X5)’les =0, (26)

where
l:=(T*FLobo (TFL)™),



whose action on vector fields of TT Met(X) is defined as
7 =Q(2).

So, in totality, the geometry of the dynamical system described by the BFO
action is given by:

T*FL

T*T* Met () T*TMet(x)
b J
TT* Met(S) TFL TTMet(x)
Xu XE
T*Met(S) FL TMet(x)
PhMet(s) PMet(s)
TH Met(%) TE
I 5 o (FL) oy r,

3.1 Flows Of The Canonical Vector Field

The canonical flow of a function on T'MetX is given by the solution to the
following Cauchy problem



This can be solved by

e[ Rk = 3 Sy el Gl (20)
£ Crans | Tohan)] = = | Sans V) (30)

Now the entire evolution dynamics of the RWR theory is given by the Euler
Lagrange equation for vgs:

ab
i \/TT (R~ 57 R) - ,/T@“pf;—lpp) 1)

which, in our formalism, is nothing but

7R ab _ ab T acpb ab
REyTN - ~(kaekt kk
e ()} oo = T (R = 57 |5 )~ ()
aby—2 kab 4
\/47R \/4R+7V\/4R+‘Cf \/4R (3

which is but the flow equation for the velocity conjugate to the metric on
TMet(X).

So,

d

dA

3.2 The Splitting of the Canonical Vector field

The algebra of canonical Lagrangian vector fields derived in the previous section
is given by

{X : LxdsOlr, = 0;X € TTMet(R)} = §(Qejosea(Met(X))).  (35)

(Here QY ..q(Met(X) is the set of all closed one forms on the space of three
metrics),and the f refers to the inverse of the  map. As this map is an isomor-
phism (when restricted to I'g), so we find that the canonical Lagrangian vector
field admits the split

(d(;@)uh"E = g’l)\/g + gfa, (36)
where £v 4 is the vector field responsible for true physical evolution of the
4R
system and Geo is the vector field which represents the infinitesimal action of
the three-Diffeomorphism group (rather its proper subgroup Dif fr(X)). It is
given by
T

Gea = —[Lea nE

kab]

0
+ [LeYar] F (37)

ab

5kab



and the evolutionary vector field is

Ev JE = [\/%kab]% — [\/> (R — ‘“’R) \/7 (kKb — kk“b) (38)
\/ 47R \/ 4y R \/ 4y R 5kab

3.3 Observables and Perennials

There exists a natural identification of the observables and perennials of this
system given by the following distributions on phase space: We define the set
of perennials as

P=0ND= {f(%zn \/ Z_gkab;)\) : Xp lf(%zn \/ 4§kab;A)] = 0} . (40)

The set of observables is defined by the set

0= {g(%b,\/g ab; A) : Gga l (’Yab,\/gkab;)\)] =0}. (41)

And D is

D = {h('}/ab; \/ﬁ ab, /\) (‘:U\/_ lh(Vabv \/gkab; A)] = O} . (42)

It is known that for a vacuum gravitational field, any such observable must be
a highly non-local quantity. The ADM mass in the case of asymptotically flat
scenarios is an example.

4 Symmetry and Reduction

We shall now attain the reduced phase space of the theory on symplectic reduc-
tion of the velocity phase space.

4.1 The Moment Map Associated with the Symmetry

The Lie algebra of the group acting on phase space is g = diff (). We need to
find a moment map

1T — i (3). (43)
(Here 0iff(X) is the dual of 9iffz(X).) This moment map is Dif fr(X) equiv-
ariant. Thus we consider the level set preserved by Dif fr(X)

I'p(0) ={m € T'plu(m) = 0}. (44)



These level sets foliate the constraint submanifold into gauge orbits. It isn’t
hard to see that the phase space function satisfying these conditions for this
particular system is

2va<w%§G”“hw—£g%d>—¢@) (45)

This is nothing but the diffeomorphism constraint. Its Dif fr(X) equivariance
is shown via

16ea 9(C") = H([€7. C")). (46)

This is analogous to the best matching procedure of the original BFO approach.

4.2 The Reduction

In this section the (pre-)symplectic reduction of the phase space by the sym-
metry is presented. We begin by applying the Marsden—Weinstein Reduc-
tion theorem (which we truncate accordingly for the presymplectic case). Let
Tg := Ip(0)/Diffr(X). Tg(0) could also be written as u~(0). Now, the
reduction theorem tells us that there is an inclusion

i:p t0) =T
, and another map R
i (0) » Tp,
for which there exists a presymplectic form w € Q?(T'g), so that
Q= jrw.
Thus we see that after reduction we go to

Lp =Tg(0)//Dif fr(2),

and
I'5(0)//Dif fr(X) C TSp(X) =T (Met(X)/Dif fr(X)). (47)

The symmetry group here is the proper subgroup of the Diffeomorphism group
where the group action fixes a preferred point co € 3 and the tangent space at
that point i.e

Dif fr(X) ={¢ € Dif f(E)[$(00) = 00, p«(00) = Id|1, 5} . (48)

This ensures that the action of this group is free and proper when ¥ is connected
and compact, which is true for the topology of S® that we have fixed, and
so the reduced phase space is ensured to be a manifold (See [2] for further
details). Tt may seem strange that even after reduction, but this is due to
the fact that we have only reduced by the group of diffeomorphisms, for in
the interpretation of this theory, it is the only constraint of the theory that

10



generates gauge transformations, and the Hamiltonian constraint generates true
dynamical evolution. But, with regard to the velocity phase space, the lack of a
true Hamiltonian is still problematic as it prevents one from attaining a strongly
non degenerate symplectic structure on the phase space, and so w is still weakly
non degenerate, and it satisfies the equation

(U(g’l)\/g)h:‘E =0.

Also, as the Hamiltonian constraint is not an equivariant moment map, sym-
plectic reduction akin to that which has been carried out in this section will not
be feasible for it.

5 Concluding remarks

In this paper, we have shown that the dynamics of Three Space General Rel-
ativity can be dealt with on the tangent bundle of the space of Riemannian
metrics by studying the presymplectic structure associated to it. Also, the first
principles and the action of the BFO approach remain intact and the presym-
plectic two form is derived out of the BFO action. We find that the notion
of observables and perennials arises naturally without considering the Poisson
brackets of the functions with the constraints.We have also shown that the mo-
ment map used in the reduction procedure comes directly out of best matching.
Even though this formalism relies on nothing but the first principles of the ‘Rel-
ativity Without Relativity’ approach, a purely Hamiltonian framework is still
necessary and this shall be the subject of future papers.
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