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ABSTRACT 
 
A Trebuchet is a non-holonomic system which is modelled after a catapult. Lagrangian mechanics was a for-
mulation introduced by Professor Joseph Louis Lagranage which predicts the minimum path a body follows 
during its motion of travel. In this paper, I built a wooden trebuchet to experiment with its shooting range under 
different counterweight loads. The trebuchet model was customized by adding a sling to its swing arm which 
changes the dynamics of the setup as the sling essentially adds scope to the trebuchet’s arm increasing its rota-
tional energy. The paper compares readings based on several counterweight settings and uses and uses the 
Euler-Lagrange equation to analyze the shooting ranges of the trebuchet. By considering the several frictional 
forces, we will derive the three equations of motion which will solely depend on the degrees of freedom of the 
system and will determine how efficient the Trebuchet is for a particular counterweight. 
 

Introduction 
 
A Brief Historical Background of Trebuchet 
 
The trebuchet is a medieval siege warfare machine that uses a counterweight and a long arm to propel projec-
tiles. According to history, it was invented in China around 300BC, which used labor to sway the arm. Later it 
was used by European armies to either defend against enemies or destroy walls and forts belonging to their 
enemies. There was also an amelioration to the trebuchet with a hinged counterweight to release heavier pro-
jectiles at a certain angle to help increase the range and velocity of the projectile. However, ever since the 
inception of gunpowder in the 9th century, the trebuchet was a bygone weapon and soon cannons replaced them 
as they proved to be more efficient. 
 
Modifications to the Trebuchet 
 
A basic trebuchet can be modified structurally to experiment with its efficiency factors. The addition of a sling 
to the trebuchet changes its dynamics as the sling essentially adds scope to the trebuchet’s arm increasing its 
rotational energy: ER = 1

2
�∑j mjrj2�ω2. 

The sling creates a greater angular velocity while launching the projectile: 

ω =
dθ
dt

=
l2mbgcos (180 − ϕ) + l1T2cos (ϕ) − l2T1cos (ψ)

Ib
 

where mb is the mass of the beam, Ib is the moment of inertia of the beam, T1 is the tension of the sling, and T2 
is the tension of the counterweight rope. 
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Changing the counterweight mass could copiously influence the range of a trebuchet. In this paper, we 
shall compare the readings of several counterweight settings and use Lagrangian mechanics to show how a 
change in the mass of a counterweight changes the range of the trebuchet. We will use Euler- Lagrange equation, 
a way to solve the equations of motion, with limited degrees of freedom (θ,ψ, and ϕ). This paper will illustrate 
the findings with a realistic model of a trebuchet and a virtual model. The general Euler-Lagrange equation, as 
a function of the generalized coordinates, is: 
∂L
∂q

−
d
dt
�
∂L
∂q̇
� = 0 

 
Furthermore, we will define three equations of motion and prove that the Lagrangian function (T - V 

or Kinetic Energy - Potential Energy) will be 0. The potential energy of the counterweight transfers to the 
projectile as kinetic energy as the latter is launched into air in its trajectory.  
 

Geometry and Equations 
 
Here is a two-dimensional representation of the trebuchet with important geometric parameters labelled accord-
ingly. These parameters will be used in derivations of equations of motion and mathematical expressions. 
 

 
Figure 1. A two-dimensional representation of the trebuchet.  
 

 
 
Figure 2. A picture of the trebuchet built for the project. 
 
m1: Mass of Counterweight 
m2: Mass of projectile 
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l1: Length of Short Arm 
l2: Length of Long Arm 
l3: Length of Projectile Sling 
l4: Length of Counterweight Sling 
θ: Angle subtended by Short Arm and Frame 
𝛟𝛟: Angle subtended by Short Arm and Counterweight Sling 
𝛙𝛙: Angle subtended by Long Arm and Projectile Sling 
(x1, y1): Position of Counterweight  
(x2, y2): Position of Projectile 
The positions of the masses (m1 and m2) in the trebuchet are:  
 R��⃗ 1=< l1sin(θ) − l4sin(θ + φ), −l1cos(θ) + l4cos(θ + φ) > 
R��⃗ 2 =< −l2sin(θ) − l3sin(−θ + ψ), l2cos(θ) − l3cos(−θ + ψ) >  
 

Differentiating the masses, the velocities of the trebuchet are: 
R��⃗ 1 =< l1θ̇ cos(θ) − l4 ��θ̇ cos(θ) cos(ϕ) − ϕ̇ sin(θ) sin(ϕ)� + �−θ̇ sin(θ) sin(ϕ) + ϕ̇ cos(θ) cos(ϕ)��

 , l1 sin(θ) + l4 ��−θ̇ sin(θ) cos(ϕ) − ϕ̇ cos(θ) sin(ϕ)� − �θ̇ cos(θ) sin(ϕ) + ϕ̇ sin(θ) cos(ϕ)�� >

R��⃗ 2 =< −l2θ̇ cos(θ) − l3 ��ψ̇ cos(ψ) cos(θ) − θ̇ sin(ψ) sin(θ)� − �−ψ̇ sin(ψ) sin(θ) + θ̇ cos(ψ) cos(θ)��

 ,−l2θ̇ cos(θ) − l3 ��−ψ̇ sin(ψ) cos(θ) − θ̇ cos(ψ) sin(θ)� + �ψ̇ cos(ψ) sin(θ) + θ̇ sin(ψ) cos(θ)� >�

 

 
The Lagrangian function in terms of Cartesian Coordinates: 

L = m1(ẋ12 + ẏ12)/2 + m2(ẋ22 + ẏ22)/2 + mbθ̇2(l12 − l1l2 + l22) − m1y1(θ,ϕ)g − m2y2(θ,ψ)g +
(l1mbcos (θ)g)/2 − (l2mbcos (θ)g)/2 
 

The Lagrangian function with negligible arm mass would be: 
L = T − V = �l12m1θ̇2�/2 − l1l4m1θ̇2cos (ϕ) + l1m1gcos (θ) − l1l4m1θ̇ϕ̇cos (ϕ) +
l42m1θ̇ϕ̇ + �l42m1θ̇2�/2 + �l42m1ϕ̇2�/2 − l4m1gcos (θ + ϕ) + (l22m2θ2)/2 − l2m2gcos (θ) −
l2l3m2θ̇2cos (ψ) + l2l3m2θψ̇cos (ψ) + �l32m2ψ̇2�/2 − l32m2θ̇ψ + �l32m2θ̇2�/2 + l3m2gcos (ψ −
θ)

 

 
When we solve the Euler-Lagrange equation with respect to θ: 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏: 
∂L
∂θ

−
d
dt
�
∂L
∂θ̇
� = 0 

 
The first expression of motion with negligible mass is: 

Expression 𝟏𝟏: m1�l1gsin (θ) + l4gsin (θ)cos (ϕ) + l4gsin (ϕ)cos (θ) − l12θ̈ + 2l1l4θ̈cos (ϕ) −
2l1l4θ̇ϕ̇sin (ϕ) + l1l4ϕ̈cos (ϕ) + l1l4ϕ̇2sin (ϕ) + 2l1l3θ̈cos (ψ) − l42ϕ̈ − l42θ̈� + m2(l2gsin (θ) −
l3gcos (ψ)sin (θ) + l3gcos (θ)sin (ψ) − l22θ̈ − 2l2l3θ̇ψ̇sin (ψ) − l2l3ψ̈cos (ψ) + l2l3ψ̇2sin (ψ) +
l32ψ̈ − l32θ�

 

 
When we solve the Euler-Lagrange equation with respect to ϕ, we get: 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟐𝟐: 
∂L
∂ϕ

−
d
dt
�
∂L
∂ϕ̇

� = 0 

 
Accordingly, the second expression of motion with negligible mass is: 

Expression 𝟐𝟐: m2�l2l3θ̇2sin (ψ) − l3gcos (θ)sin (ψ) − l2l3θ̈cos (ψ) + l3gsin (θ)cos (ψ) + l32θ̈ − l32ψ̈� 
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When we solve the Euler-Lagrange equation with respect to ψ, we get: 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟑𝟑: 
∂L
∂ψ

−
d
dt
�
∂L
∂ψ̇

� = 0 

 
Therefore, the third expression of motion with negligible mass is: 

Expression 𝟑𝟑: m1�l1l4θ̇2sin (ϕ) + l4gcos (θ)sin (ϕ) + l4gcos (ϕ)sin (θ) + l1l4θ̈cos (ϕ) − l42θ̈ − l42ϕ̈� 
 

Results from the Experiments 
 
The trebuchet is a is a non-holonomic constraint system with dependent, independent, and control variables. 
Variables 
 

Independent variable: Counterweight (m2) 
Dependent variable: Range of projectile 
Control variables: listed in Table 1 below 

 
Table 1. Control variables in the experiment. 

Dimensions of parts of the Trebuchet 

l1 (length of short arm) 0.28 m 

l2 (length of long arm) 0.91 m 

l3 (length of sling) 0.79 m 

l4 (length of counterweight sling) 0.14 m 

m2 (mass of projectile) 0.052 kg 

 
During the experiment it was arduous to control the angles subtended in the Trebuchet so we will assume that 
θ,ϕ, and ψ are constant angles: 

𝜓𝜓 = 48∘,𝜃𝜃 = 119∘,ϕ = 55∘ 
 

Results 
 
Table 2. Measurements of the distance traveled by the projectile over 5 trials under 8 different counterweight 
conditions. 

Counterweight in 
kgs 

Range of Projectile (Distance) in meters 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

2 2.92 2.21 3.10 3.35 2.64 
3 7.37 7.01 6.91 7.01 6.98 
4 9.55 10.11 8.83 9.50 9.11 
5 11.48 12.40 11.00 11.38 11.72 
6 12.67 13.46 12.65 12.75 13.36 
7 14.87 15.05 15.12 16.46 15.85 
8 18.34 17.80 18.21 18.49 17.74 
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9 18.92 19.54 19.95 20.01 19.31 
 
Table 3. The average range and standard deviation of the projectile modelled by the trebuchet. 

Range of projectile 

Counterweight in 𝐤𝐤𝐤𝐤𝐤𝐤 Average Distance in meters Standard Deviation 

2 2.84 ± 0.57 0.44 

3 7.06 ± 0.23 0.18 

4 9.42 ± 0.64 0.48 

5 11.60 ± 0.70 0.52 

6 12.98 ± 0.40 0.40 

7 15.47 ± 0.80 0.67 

8 18.11 ± 0.38 0.33 

9 19.55 ± 0.54 0.45 

 
A Range versus Counterweight graph 
 
Here is a graph representing the values measured in the trials during the experiment. 
 

 
Figure 3. Graph of Range in meters on Y-axis to Counterweight in kgs on X-axis. 
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Discussions 
 
From figure 3, we learn that the projectile range measurements had the least variation when the counterweight 
was 6kg. Inputting the values when the counterweight was 6kg and using the dimensions of the trebuchet in the 
three equations of motion, we get: 
Equation 1 = 16.08 
Equation 2 = 0.3839 
Equation 3 = 0.9564  

As we can see from the data, the values of the equation are not equal to 0 but are relatively close to the 
desired value. This can be because the Lagrangian function did not consider the frictional forces and haply the 
strength, suspension, material of the string. The release angle of the trebuchet also varied between launches and 
was not constant as it was onerous to maintain it at an optimal degree. 
 

Efficiency of Trebuchet 

Counterweight 
in kgs 

Average Measured Value 
in meters 

Theoretical Value in meters Efficiency 

2 2.84 15.86 17.91% 

3 7.06 23.81 29.65% 

4 9.42 29.66 31.76% 

5 11.60 33.23 34.91% 

6 12.98 36.01 36.04% 

7 15.47 40.80 37.92% 

8 18.11 44.93 40.31% 

9 19.55 49.86 39.21% 

 

Conclusion 
 
The efficiency,  Average-Measured-Value 

 Theoretical-Value 
100% and the theoretical values incorporated frictional forces (gravity: 

9.81 m/s2 and wind: 2.1 m/s2 ) and inertia of the throwing arm and inertia of the counterweight. However, 
the Lagrangian function and the three equations of motion did not include the inertia of the system.  
 

Limitations 
 
Even though the results show that the trebuchet was most efficient when the counterweight was 8 kg, the system 
was unstable in its position with higher loads (weights). While performing experiments for counterweights 
larger than 8 kilograms, the trebuchet appeared to sway and tilt about its position while launching the projectile. 
I realized that the design, the dimensions of the model, and the material used to construct the trebuchet were 
appropriate for counterweights in the range of 2 to 8 kg. 
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