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Abstract 

Sound waves have many properties. Some of these include wavelength, amplitude, and intensity of 
the sound. This paper focuses on a method to quantify audio complexity of different sounds by 
finding their frequency. Employing spectroscopy and MATLAB techniques to plot spectrograms, we 
approximate the frequency of each audio (Hz) and the sound corresponding to the frequency(dB). 
Several data points were collected through original piano recordings, movie scenes, and 
GarageBand. Differences in the frequency of each collected audio help us come closer to answering 
the question of what factors caused a change in the complexity of an audio. This paper starts by 
discussing spectroscopy, audio compression, and compression ratios. Compression ratios are found 
by dividing the compressed size of each audio by the actual size, providing an accurate value using 
Python compression. An efficient method to compare the audios involves a graphical display of 
several audios/tunes with their corresponding complexity value. Instead of plotting the compression 
ratios, developing a complexity metric in terms of the size ratio is efficient. After comparing each 
audio's complexity, providing a more thorough proof was necessary. In our case, it was done using 
spectrograms. These spectrograms were programmed to vary in color pixels, frequency values, and 
corresponding sounds. The drastic variations in the spectrograms of several sounds helped us make 
connections between audios and generalize a reason for why some audios were more complex than 
others. Apart from proving the complexities of different audios, I was also able to demonstrate why 
the frequency increased as we progressed up the C major scale. The main objectives of this paper 
are to display a comparison of different audios in terms of their complexity, present the frequency of 
notes in the piano, suggest possible reasons for the differences in complexity between audios, and 
provide proof for the increasing frequency of higher notes played in a scale. Through my 
spectrograms and graphs, I concluded that audios from movie recordings were the most complex. 
The increased complexity was due to the loud sounds and the background audio, further solidified by 
the varying and higher frequency in respective spectrograms.  

 

Results and Discussion 

Sound Waves, Lossy and Lossless compression: 

Sound is a set of many compressions and rarefactions. The waves are represented in a sinusoidal 

structure which has many traits. Firstly, they have crests and troughs, the highest and lowest points, 

respectively. Furthermore, the distance between two adjacent crests or troughs is known as 

wavelength. The formula to find the frequency in sound waves is Frequency=1/Time. This formula 

can help us understand that the frequency of sound waves is the number of complete waves in one 

second or any unit of time. The amplitude, or loudness, is the vertical distance from the baseline to a 

crest or trough. Many of these properties are interdependent. For example, a long wavelength 

suggests a lower pitch and a lower frequency; amplitude and frequency are inversely proportional, 

i.e., as one increases, the other decreases, and vice versa. Audio compression reduces the size of 

an audio file by a certain amount in two ways: Lossy file compression and Lossless file compression. 

Lossy file compression includes removing or eliminating any unnecessary values of data. MP3(a type 

of lossy file compression) removes the sounds that cannot be heard clearly by the ear because they 

might be softer than another sound played simultaneously. This process would reduce the size, but 

certain parts get deleted permanently, making it inappropriate for users who need the original files 

back. Another type of lossy compression is called JPEG. We saw that MP3 was for audio, whereas 

we use JPEG for images. It reduces the image size by a factor of 5 to 15. However, JPEG reduces 

the size by removing color patterns from the image, ultimately decreasing the image’s quality and 

visibility. In JPEG, we can look at the quality using percentages and consider the uncompressed 

image as 100%. For example, if the image quality percentage is 1%, then the image has been 

compressed massively but with inferior quality. An image quality percentage of above 90 is usually 

considered good quality. After reducing the size, the compressor reconstructs the file into a smaller 

one. On the other hand, lossless file compression reduces the file size without eliminating any form of 



data. As a result, all the original data bits are present even after compression. This originality makes 

it suitable to use when all information is essential and cannot be deleted. Lossy file compression 

reduces the file size more than this but sacrifices the quality and specific pieces of information in 

exchange for it. I do a lossless compression (FLAC) and take the ratio of the two audios as a metric 

for complexity. WAV format is ideal for storing audio CDs. I recorded all my audio in uncompressed 

WAV format. Then, I compressed this audio using Python. 

 
Spectroscopy: 

Spectroscopy was first used in the 17th century. There are many types of spectroscopies: 

Photoemission, Circular Dichroism, IR, Acoustic, Raman, Time-resolved, and X-ray photoelectron. 

After the 17th century, scientists such as William Hyde Wollaston and Niels Bohr worked on this field 

of study until the first spectrogram was created on June 24th, 1881. Spectrograms visually portray 

the frequencies, which can be light, sound, etc. In this research project, I created a spectrogram for 

many different audios, such as the note ‘C’ constantly played on the piano and audio from a De Niro 

movie to roughly estimate the frequency. The spectrograms take the audio input, produce a graph 

indicating the audio frequencies, and show the frequency at which the sound is most concentrated. 

The ones I have plotted with the audio show the Frequency (Hz), sound(dB), and the different colors. 

The intensity and brightness of the colors suggest which frequency the sound is closest to. For 

example, if the brightest and most intense color lies on the 240Hz mark, the frequency would be 

240Hz. Finally, spectrograms have multiple applications in real life; a few are music, seismology (the 

study of earthquakes and other similar phenomena), and interpreting bird calls. 

  

Results: 

Our analysis of spectrograms and graphs proved that the frequency of notes in the C major scale 

increases as the notes get higher. We plotted several individuals and combined spectrograms with the 

audio of the notes. Furthermore, we could also portray the complexity of several audios by presenting 

why some audios were more complex than others. We discussed the patterns of the pixels in the 

spectrograms, the most prominent frequency, etc., which explained our results. 

 
Finding the Compression Ratio of the sounds Process: 

I played a few notes and songs on the piano, took recordings from movies, and utilized 

GarageBand while simultaneously recording the sounds with an audio recorder in WAV format. This 

format helped me store the sounds and also showed their size. I saved the sizes as an actual size 

variable and then compressed these audios using Python. The sounds changed to FLAC, from WAV 

format, after compression. 

 

After being converted to FLAC, the new audio size is called ‘compressed size.’ Audio file names=(‘C,’ 

‘D,’ ‘CD,’ ‘CDE,’ ‘complex,’ ‘random,’ ‘C_1min’, ‘complex_1min’, ‘random_1min’, ‘C_20s_press’, 

‘C_60s_press’, ‘guitar_slow,’ ‘guitar_fast,’ ‘drums_slow,” drums_fast,” De_Niro,” Tejas,’ ‘a-team1’,’ 

Tejas2’,’ clint_eastwood,” blank_20’,’ piano-drums,” piano-guitar,” shooting’):  

 

These are the names of the audios used in this paper. 

 

I found the compression ratio of all the sounds by dividing the compressed size by the actual size. 

These were the compression ratio values of all the audio: these values helped me determine which 

type of sounds get compressed more than the others. 

 

size of C = 3627996 ...ratio of C = 0.1802501987323029  

size of D = 3650576 ...ratio of D = 0.17583636116601872 

size of CD = 3620472 ...ratio of CD = 0.1817080756321275  

size of CDE = 3627996 ...ratio of CDE = 0.17581992923917225 

size of complex = 3605416 ...ratio of complex = 0.21512718643285547  

size of random = 3609180 ...ratio of random = 0.22405200073146808 

size of C_1min = 10695288 ...ratio of C_1min = 0.17207680615987153 



size of complex_1min = 10646364 ...ratio of complex_1min = 0.19822758267517435  

size of random_1min = 10635076 ...ratio of random_1min = 0.22009217423552027 

size of C_20s_press = 3579076 ...ratio of C_20s_press = 0.21722617792972265 

size of C_60s_press = 10680232 ...ratio of C_60s_press = 0.19810468536638529 

size of guitar_slow = 3594128 ...ratio of guitar_slow = 0.1699032421772402 

size of guitar_fast = 3575312 ...ratio of guitar_fast = 0.2019079733461024  

size of drums_slow = 3564024 ...ratio of drums_slow = 0.26348167127943023 

size of drums_fast = 3612944 ...ratio of drums_fast = 0.27152648920105044 

size of De_Niro = 407214 ...ratio of De_Niro = 0.42186417952231503 

size of Tejas = 3609180 ...ratio of Tejas = 0.21201408630215174  

size of a-team1 = 151092 ...ratio of a-team1 = 0.6889709580917587  

size of Tejas2 = 3646812 ...ratio of Tejas2 = 0.22347299504334198  

size of clint_eastwood = 357420 ...ratio of clint_eastwood = 0.6235661126965475  

size of blank_20 = 10642600 ...ratio of blank_20 = 0.15328462969575105 

        size of piano-drums = 3601656 ...ratio of piano-drums = 0.2662802888449091 

        size of piano-guitar = 3624232 ...ratio of piano-guitar = 0.19708561703555402 

size of shooting = 3590364 ...ratio of shooting = 0.2646634157428049 

 

This data helped determine which audio had the highest compression ratio; in this case, it was the 

audio titled a-team1. This audio’s compression ratio was 0.6889709580917587. The utterly blank 

audio, titled blank_20, had the lowest compression ratio of 0.15328462969575105. With this data, I 

plotted a bar graph. I used the x-axis to display different audios and the y-axis as the compression 

ratio as the complexity metric for the audios. The graph: 

 
Fig 1 

 

 



As shown in Fig 1, the audio titled- “a-team1”,” De_Niro,” and “clint_eastwood” have the highest size 

ratio as a metric of complexity. It also has louder audio. This result could be because all the sounds 

are from a scene in a movie or show, which means they all have background noises and multiple 

loud sounds played simultaneously hence the high value. On the other hand, the audio titled ‘C’ has 

a lower value because of its simplicity of being only one sound played at regular intervals with no 

background audio. To ensure that the complexity(y-axis) was accurate, I plotted a spectrogram for 

some of the audios to see whether some had more varying frequencies and colors than others to 

prove the results from the bar graph. 

Hence, I took the spectrogram for the audio titled ‘C’ and plotted it. 

The spectrogram: 

  

Fig 2 

 

 

The above spectrogram (Fig 2) represents the time(s), frequency (Hz), and sound (Db). There are 

multiple colors, but the most prominent and bright color lies above 200 Hz. The colors are very even 

and have a simple pattern. Looking at it, we estimate that the frequency is between 250- 290. 

Moreover, the sound at which this frequency appears is slightly over -60 Db. The actual frequency of 

C is 261.63Hz, which lies within our range. To make the frequency more straightforward, I plotted a 

graph indicating the most occurring frequency: 

 
Fig 3 

 



The orange line is the frequency. 

To compare the note ‘C’ with other notes on the piano, I simultaneously played the note ‘D’ and 

plotted a spectrogram after compression and this was how it looked: 

 

 

Fig 4 

Fig 4 shows that the brightest and most prominent color is almost precisely between 200Hz and 

400Hz. This suggests that the frequency of D is around 300Hz. The actual frequency of ‘D’ is 

293.665 Hz which is similar to the value we generated through the (Fig 4). The sound that 

corresponds with the frequency is between -50 and -60 decibels. To clarify the value of the 

frequency, I plotted a graph similar to that of C. 

 
Fig 5 

 

The orange line demonstrates the note’s frequency, which is almost 300 Hz. To further prove that D’s 

frequency is greater than C’s, I played both notes together on the piano and recorded them. I passed 

this audio through the compression algorithm and obtained audio for which I plotted a spectrogram. 

 
The below spectrogram is the spectrogram for both notes, C and D played together. 



Fig 6 

This Spectrogram (Fig 6) clearly shows that the frequency of D is greater than C, as it is slightly 

above C in every interval. The spectrogram also indicates the individual frequencies of these notes. 

The result made me assume that every note after C in the C major scale has a higher frequency 

value than the previous ones. The notes in this scale, arranged in ascending order, are C, D, E, F, G, 

A, and B. Hence, note D has a higher frequency than C. I tested this for note E as well. I played the 

notes C, D, and E on the piano and recorded them. These were then passed through the same 

compression algorithm. After this, I plotted a spectrogram which looked like this: 

Fig 7 

Fig 7 demonstrates the three different notes in different time intervals. We can see that note E has a 

higher frequency than C and D through the pattern generated. This proves that as higher notes are 

played in the C major scale, the frequency of the notes increases. This occurs because the 

vibrations of notes rise as we move up the scale. Hence, B has the highest frequency in the 

particular scale. 

 
Now, I used the audio titled ‘De Niro’ and converted the audio into a spectrogram. This audio had a 

much higher complexity value than the individual piano notes, as shown in the bar graph above. 

Thus, I plotted the spectrogram to see how complex the audio would look in a spectrogram. 



Fig 8 

 

 
This spectrogram (Fig 8) has different colors and intensities in many areas. We can see that there isn’t 
one particular frequency where the most prominent color occurs. The colors are also very bright, even at 
higher frequencies like 800Hz. We can see that the audio moves through different frequencies, and the 
color pixels fill in almost all of the spectrogram, while the individual notes’ spectrogram had many plain 
and unfilled spaces. Due to the different frequencies, this audio has no particular sound value. Hence, I 
could conclude that this audio was more complex than the others described. This audio, known as 
overtones, had multiple high frequencies that drove this complexity. 

 

I also plotted a spectrogram for the audios titled ‘Clint Eastwood’ and ‘a-team1’, which also had a 
relatively high complexity value. The ‘a-team 1’ spectrogram: 

 

Fig 9 

 
 
 

The ‘Clint Eastwood’ spectrogram: 



Fig 10 

Fig 9 and 10 are similar to the De Niro one. This is because they have prominent colors in several 

frequencies and even go up to 8192 Hz. Moreover, as time increases, there isn’t a single pattern but 

many different positions in which the colors are present. This complexity is possibly because of the 

presence of background audio which simultaneously plays with other sounds; Hence, I was able to 

prove that movie or TV show recordings are more complicated and intricate than simple piano sounds. 

 

 
Conclusion: 
In conclusion, this research paper has tried to portray why multiple sounds played simultaneously 

generate a higher frequency and a higher compression ratio. Furthermore, it also provides the 

frequency of specific notes played on the piano. We found it using a spectrogram. Our results show 

that people speaking with background audio have a higher compression ratio than simple piano 

notes. The higher compression value is because the ratio for one of the movie scenes was 0.69, 

while it was 0.15 for a single piano key. The audio with the higher compression ratios appeared to be 

more complex due to their higher and varying frequencies. The frequencies for the complex audios 

go up to 8192Hz. It is much higher than that of a single piano note. These results suggest that 

compression ratios and complexity are related. Simpler audios get compressed more hence the low 

compression ratio for blank audio. Another significant result is that the higher the note in the C major 

scale, the higher the frequency of the note. Our spectrograms highlight the frequency of individual 

notes. Based on our examples, the sound frequency was between 250-290 for C and around 300 for 

D. Hence, we concluded that the position of notes in the scale is directly proportional to their 

frequency. Overall, we presented which audios were more complex using a bar graph, depicted the 

audios’ movement in a spectrogram, and provided reasons for the appearance of spectrograms. 

Therefore, the paper did not just show which audios were more complex but also showed why they 

were more complex by analyzing spectrograms. 
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